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Why Spatial Data?

� weathe�

� earthquake�

� river�

� environmen�

� vegetation

Natural phenomena:

� urban plannin�

� public service�

� crime�

� agriculture

Humanmade:
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Spatial Data Characteristics

PARIS

3 km

1 043 km

�� Spatial dependence structure

�� One single realization

Natural event Deterioration of the environment
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General Spatial Model

Geostatistical Data: Point Patterns:
fixed, irregularly or 

Goal: Goal:

Example:Example:

Observations: Observations: locations (and number n)

seismologyhydrogeology (pH value)

regularly sampled

modeling, prediction

are random

capturing a pattern in data
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Geostatistics: History and Applications

1950s: Danie G. Krige’s study in mineral deposit (Krige, 1951)

1960s: Georges Matheron lays foundations of Geostatistics theory
(Matheron, 1962)

Covariance function describes the dependence structure of data

Unknown in practice =⇒ need to be estimated

weather patterns, climate trends, and atmospheric

phenomena

Meteorology:

changes due to human influence or other natural

forces

Environment:

spatial patterns of disease incidence and mortality Healthcare:
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Point Processes: History and Applications

1970s: Temporal Hawkes Processes (HP) (Hawkes, 1971)

1980s: Introduction of HP to earthquake modeling (Ogata, 1988)

1990s: extension to spatio-temporal data: earthquakes exhibit both
spatial and temporal clustering (Musmeci and Vere-Jones, 1992)

mainshock-aftershock pattern (clustering and

triggering) 

Seismology:

'near-repeat victimization' pattern Criminology:

spread of infectious diseases, patterns in disease

occurrence 

Epidemiology:
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Research Questions

         How to learn from spatial data that presents a         

                                ?


How does the dependence structure of the observed 
phenomenon affect the                          of the algorithms?performance

dependence structure

GEOSTATISTICS POINT PROCESS

      How                  is the 
empirical covariance 
estimator?

accurate1.

2.      What is the                                                       
performance of the Kriging 
predictor?

non-asymptotic

3. How to overcome the 



when learning from a spatio-
temporal Hawkes process?

 and modeling challenges

      How to accurately model  4.
real-world situations?

numerical
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A Statistical Learning View of
Simple Kriging



Motivation

Machine Learning:

• Assets: statistical learning
theory for independent data,
non-parametric theory

• Limits: very few theoretical
guarantees for spatial data

Spatial Analysis:

• Assets: take advantage of
spatial structure (modelled
by covariance function)

• Limits: very few
non-parametric theories

• Limits: lack of non-asymptotic results
for spatial data

Challenge 1: Provide statistical guarantees for prediction,
under the form of non-asymptotic bounds, for non-parametric

methods in the context of spatial data.
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State-of-the-Art

Parametric

Non-Parametric

Asymptotic

M
et

ho
ds

R
es

ul
ts

Non-Asymptotic

Zimmerman and Cressie

1992

Zimmerman

1989

Qiao et al.

2018

Stein

1999

Elogne et al.

2008

Hall and Patil

1994

requires selection of a 
model and estimation of 
unknown parameters

more flexible methods 
for massive spatial 
datasets

concentration bounds 
for independent copies 
of the spatial process

mainly asymptotic results

with independent copies
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Notations

• S ⊆ R2 : spatial domain

• C(s, t) : covariance function C(s, t) = Cov(Xs,Xt)

• X(sd) : observations of X X(sd) = (Xsi)1≤i≤d

at locations sd = (si)1≤i≤d.

• cd(s) : covariance vector cd(s) =
(
Cov(Xs,Xsi)

)
1≤i≤d

• Σ(sd) : covariance matrix Σ(sd) = Var(X(sd))

• X′ : one single realization of X X′(σn) =
(
X′
σi

)
1≤i≤n

at locations σn = (σi)1≤i≤n.
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Simple Kriging Problem

Simple Kriging: predict the value of X at some unobserved location s,
based on d sampled observations (Xsi)i≤d, assuming a linear
combination of the observations: fλ(s) = 〈λ(s),X(sd)〉, such that λ
minimizes the variance.

fλ∗(s) = X(sd)
⊤Σ(sd)

−1cd(s)

↪→ the weights λ∗ depend on covariance function and s

{Xs, s ∈ S} random field (Xsi )i≤d sampled observations 10/42



Plug-in Predictive Rule

Theoretical: Empirical:
covariance estimation

estimated

plug-in rulecovariance function known

predictor is            (Best Linear

Unbiased Predictor)

BLUP

covariance function unknown

and need to be 

no guarantees of optimality

=⇒Motivation: Need to establish rate bounds that assess the
generalization capacity of the resulting predictive map
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Statistical Learning Guarantees

Accuracy of predictor: measured by the integrated Mean Squared
Error (IMSE) over the spatial domain S :

LS(fλ) = EX

[∫
s∈S

(fλ(s)− Xs)
2 ds

]
=

∫
s∈S

(
Var(Xs) + λ(s)⊤Σ(sd)λ(s)− 2 cd(s)⊤λ(s)

)
ds

Statistical guarantees of predictor: The global excess risk quantifies
the gap between the optimal theoretical predictor and the empirical
predictor errors:

LS(fλ̂)− LS (fλ∗) = EX

[∫
s∈S

(
fλ̂(s)− fλ∗(s)

)2 ds]
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Stationarity Assumption

Limitation: unique realisation for learning with only n observations

Assumption 1: X second order stationary with isotropic covariance
(Cressie, 1993): constant mean µ ∈ R, and invariant covariance C
(depends only on distance h):

∃c,C(s, t) = c(‖t− s‖) = c(h)

−→√
Solution: X is sufficiently homogeneous inside the spatial

domain (its characteristics are identical from one point to another)
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Assumptions (suite)

• Assumption 2: X Gaussian random field with zero mean and
positive definite covariance function

−→√
strict stationarity, all laws are known, Bochner’s theorem

(Stein, 1999; Hall and Patil, 1994)

• Assumption 3: In-fill asymptotic: number of observations within
spatial domain S increases (denser and denser grid) and regular
grid (Cressie, 1993)

−→√
accurate and unbiased estimator
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Estimation of the Dependence Structure

How accurate is the empirical covariance estimator?
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Spatial Dependence Structure

How data points are related to each other, based on their
spatial proximity?

−→ covariance and semi-variogram functions describe how the
spatial correlation between data points changes with distance

Covariance:

c(h) = E [(Xs+h − µ) (Xs − µ)]

Semi-variogram:

γ(h) =
1
2
E
[
(Xs+h − Xs)

2
]

Property: For all h ∈ R, γ(h) = c(0)− c(h).
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Non-parametric Estimation of the Dependence Structure

Empirical semi-variogram (Matheron, 1962):

γ̂(h) =
1

2nh

∑
(si,sj)∈N(h)

(
Xsi − Xsj

)2
,

where N(h) is the set of pairs of sites at a distance h (set of
neighbors) and nh its cardinality.

Advantages:

• flexible approach to the massive character
of spatial datasets

• does not require knowledge of mean

• unbiased estimator (for regular grids)

• under Gaussianity assumption, γ̂(h) is sum
of independent χ2 variables
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Additional Assumptions

−→√
inferior bound on nh

• Assumption 4: ∃ θ, ∀h ≥ θ, c(h) = 0 (border hypothesis)

• Assumption 5: c is of class C1 and its gradient is bounded by Q
(regularity/smoothness hypothesis)

−→√
for the estimation error at all lags
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Estimation of the Dependence Structure

Corollary (Siviero et al., 2023)

Suppose that Assumptions 1–5 are satisfied. Then, for any δ ∈
(0,1), we have with probability at least 1− δ:

sup
h≥0

∣∣ĉ(h)− c(h)
∣∣ ≤ C3

√
log(4n/δ)/n+ Q/(

√
n− 1),

as soon as n ≥ C′
3 log(4n/δ), where C3 and C′

3 are positive con-
stants depending on θ and on the bounds of the eigenvalues of
the covariance matrix solely.
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Sketch of Proof

• Distribution of γ̂(h): Under the Gaussian assumption (Hyp 2),

γ̂(h) ∼ 1
nh

(Hyp 3 and 4)︷︸︸︷
nh∑
i=1

`i(h)χ2
i ,

where `i(h)’s are the eigenvalues of L(n, h)Σ(σn).

• Poisson tail bounds: Thanks to recent results in (Bercu et al.,
2015) and (Wang and Ma, 2020):

P (|γ̂(h)− γ(h)| ≥ t) ≤ e−C1nt + e−C′
1nt

2
,

where C1 and C′
1 are positive constants depending on θ (Hyp 4).

• Estimation for all lags: Thanks to a piece-wise constant
estimator and the regularity assumption (Hyp 5).

20/42



Statistical Learning Guarantees for
the Kriging Method

What are the non-asymptotic guarantees for the Kriging
predictor?
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Statistical Learning Theory

ERM: fλ̂ is the empirical risk minimizer of

L̂S(fλ) =
∫
s∈S

(
ĉ(0) + λ(s)⊤Σ̂(sd)λ(s)− 2 ĉd(s)⊤λ(s)

)
ds

GOAL: define non-asymptotic bound of global excess risk:

LS(fλ̂)− LS(fλ∗) =∫
s∈S

(
λ̂(s)− λ∗(s)

)⊤
Σ(sd)λ̂(s) + λ∗(s)⊤Σ(sd)

(
λ̂(s)− λ∗(s)

)
− 2 cd(s)⊤

(
λ̂(s)− λ∗(s)

)
ds
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Non-asymptotic Bound for the Global Excess Risk

Theorem (Siviero et al., 2023)

Suppose that Assumptions 1–5 are satisfied. Then, for any δ ∈
(0,1), we have with probability at least 1− δ:

LS(fΛ̂d
)− LS(fλ∗) ≤ C6 d2

√
log(4n/δ)/n+ C′

6 d2 Q/(
√
n− 1),

as soon as n ≥ C′′
6 log(4n/δ), where C6, C′

6 and C′′
6 are positive

constants depending on θ and on the bounds of the eigenvalues
of the covariance matrix solely.
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Sketch of Proof

sup
s∈S
||λ̂(s)− λ∗(s)|| ≤ |||Σ(sd)−1||| sup

s∈S
||ĉd(s)− cd(s)||

+ |||Σ̂(sd)−1 − Σ(sd)−1||| sup
s∈S
||ĉd(s)|| ,

N1 N2

N3 N4

where

• N1: From bounds on eigenvalues of Σ(sd)

• N2: From Corollary

• N3: Non-asymptotic bound on the accuracy of the precision
matrix estimation

• N4: From Corollary and Assumption 5
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Illustrative Experiments

Averaged MSE on 100 realisations, with two covariance models, for
varying θ

4 6 8 10
θ

0.75

0.80

0.85

0.90

0.95

1.00

AM
SE

Empirical
Theoretical

Figure 1: Truncated power law (TPL)

✓ satisfies all the assumptions

4 6 8 10
θ

0.2

0.4

0.6

0.8

1.0

AM
SE

Empirical
Theoretical

Figure 2: Gaussian

× not Hyp 4, but vanishes quickly

−→✓ experiments corroborate our theoretical results:
the error depends on θ (role of technical assumptions is verified)

−→✓ results for Gaussian covariance encourages to relax Hyp 4 25/42



Contributions

1. Flexible covariance estimation:

We develop tail bounds for the non-parametric covariance
estimator.

2. Statistical guarantees for Kriging:

We develop a novel theoretical framework offering guarantees
for empirical Kriging rules in the form of non-asymptotic bounds.

3. Our numerical experiments on simulated and real
meteorological data corroborate our theoretical results.
GitHub: github.com/EmiliaSiv/Simple-Kriging-Code
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Flexible Parametric Inference for
Space-Time Hawkes Processes



Motivation

Seismology
• Mainshock-aftershock clustering

behavior

• (Vere-Jones, 1970; Ogata, 1988)

Criminology
• Near-repeat victimization

pattern

• (Mohler, 2014; Zhu and Xie, 2022)

Challenge 2: Develop a new, efficient, and accurate method to
predict from spatio-temporal data, such that it is flexible in

modeling real-world situations.
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Hawkes Processes

• Point process: collection of events, randomly distributed over time or
space

↪→ behavior characterized by conditional intensity function.

• Hawkes (or self-exciting) process: each event increases the likelihood
of future events in its neighborhood

↪→ intensity depends on time, location, and history of the process.

Figure:
Univariate
spatio-
temporal point
process
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Conditional Intensity Function

00 T Time TimeT

Conditional intensity          of 
process 1

Counting process       of process 1

0 T0 T Time Time

Conditional intensity          of 
process 2

Counting process      of process 2
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Notations

Given D ≥ 1 type of events, for each i ∈ {1, · · · ,D}, the intensity function of
the i-th process of a multivariate spatio-temporal Hawkes process (MSTHP):

λi(x, y, t|Ht) = µi +
D∑

j=1

∑
uj
n∈Hj

t

αij gij(x− xjn, y− yjn, t− tjn)

baseline

based on history excitation scaling

triggering kernel

• T ∈ R+: stopping time, S ⊂ R2: compact set of the space domain

• µi: parameter controlling spontaneous event apparition rate with µi > 0

• Hi
t: collection of past events ui

n = (xin, yin, tin), (xin, yin) ∈ S, tin ∈ [0, t]

• αij: describes excitation behavior between events with 0 ≤ αij < 1

• gij : S × [0,T] 7→ R+: spatio-temporal kernel (excitation function):
influence of past events onto future events

−→ parameters: θ = {µi,αij,ηij}ij
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State-of-the-Art

Two assumptions are commonly made:

• Space-time separability (Mohler, 2014; Ilhan and Kozat, 2020)
√

brings simplicity
× not realistic (space-time interactions)

• Constrained kernel models (Chen et al., 2021)
√

computational efficiency
× restrictive for some real-world situations

=⇒Motivation: Need to develop a parametric method allowing (1)
any kind of kernels and (2) space-time interactions
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Flexible Inference Approach for MSTHP

How to accurately model real-world situations using MSTHP?
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Inference Approach: Key Components

Inspired by recent work of (Staerman et al., 2023), the inference approach
relies on three key components:

1. Discretization: define a three dimensional regular grid G = GS × GT with
∆S ,∆T > 0 the stepsizes of the spatial and temporal grids, project the
observed events on these grids and define H̃i

T.

↪→
√

we can rewrite the intensity in a discretized manner λ̃.

2. Finite-support Kernels: consider the spatio-temporal kernels to be of
finite lengths WS and WT , and define LT = bWT/∆Tc+ 1,
LS = b2WS/∆Sc+ 1 the number of points on the discretized temporal
and spatial support.

↪→
√

reduce computational burden.
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Discretized Loss

LG(θ, H̃T) =
D∑

i=1

∆2
S∆T

GS∑
vx,vy=0

GT∑
vt=0

(
λ̃i[vx, vy, vt]

)2
− 2

∑
ũin∈H̃i

T

λ̃i

[
x̃in
∆S

,
ỹin
∆S

,
t̃in
∆T

]
= (T+∆T)(2SX +∆X )(2SY +∆Y)

D∑
i=1

µ2
i

+ 2∆X∆Y∆T

D∑
i=1

µi

D∑
j=1

LX∑
τx=1

LY∑
τy=1

LT∑
τt=1

αij g∆
ij [τ ] Φj(τ ;G)

+ ∆X∆Y∆T

D∑
i,j,k=1

LX∑
τx,τ ′

x=1

LY∑
τy,τ ′

y=1

LT∑
τt,τ ′

t =1

αij αik g∆
ij [τ ] g∆

ik
[
τ ′] Ψj,k(τ, τ

′;G)

− 2
D∑

i=1

Ni
Tµi +

D∑
j=1

LX∑
τx=1

LY∑
τy=1

LT∑
τt=1

αij g∆
ij [τ ] Φj(τ ; H̃i

T)

 ,

P1

P2

P3
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Inference Approach: ERM and Precomputations

3. Precomputations: in the loss, terms appear that do not depend on the
set of parameters θ:

• P1: Φj(τ ;G)
• P2: Φj(τ ; H̃i

T)

• P3: Ψj,k(τ, τ
′;G)

↪→
√

these terms can be precomputed at initialization and used at each
step of the optimization procedure.

=⇒ Gradient-based optimization: approach efficiently computes exact
gradients for each parameter
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Applications to Real Data: Seismic Activity in California

Table 1: Negative Log Likelihood (NLL) values on test sets of various
extracted earthquake datasets (NCEDC, nce, 2014) with several triggering
(separable and non-separable) kernels. The best NLL is in bold and the
second best is underlined.

Setting 1987 - 1989 2003 - 2014 1967 - 2003
TG + TG 2.77 1.76 0.72
TG + EXP 3.25 2.14 0.65
TG + KUM 2.98 2.66 0.57
POW + TG 2.11 1.04 0.18
POW + EXP 1.72 1.57 0.20
POW + KUM 2.06 1.50 0.29
NS1 1 3.77 2.68 0.88
NS2 2 3.77 2.67 0.87

1 Function from the class of non-separable functions in (Cressie and Huang, 1999)
2 Spatio-temporal function from the (Gneiting, 2002) class
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Applications to Real Data: Burglary in Chicago

Table 2: NLL values on test sets of various extracted burglary datasets of the
Chicago Crime Dataset with several triggering (separable and non-separable)
kernels.

Setting 2008 2002 - 2004 2002 - 2006
TG + TG -0.24 0.26 0.51
TG + EXP -0.24 0.38 0.60
TG + KUM -0.23 0.35 0.54
POW + TG 0.54 1.04 1.10
POW + EXP 1.27 1.03 1.08
POW + KUM 0.83 0.86 0.91
NS1 -0.37 -0.43 -0.28
NS2 -0.95 -0.49 -0.31
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Comparison with State-of-the-Art Methods

Table 3: Spatial and Temporal NLL values on test sets of various extracted
real-world datasets.

Dataset Earthquake COVID-19 Citybike
Models Spatial Temporal Spatial Temporal Spatial Temporal

NSTPP 1 0.886 -0.623 1.9 -2.25 2.38 -1.09
DeepSTPP 2 4.92 -0.174 0.361 -1.09 -4.94 -1.13
DSTPP 3 0.413 -1.1 0.35 -2.66 0.529 -2.43
Our approach -0.501 -10.021 -0.887 -6.336 0.083 -4.275

1 NSTPP from (Chen et al., 2021)
2 DeppSTPP from (Zhou et al., 2022)
3 DSTPP from(Yuan et al., 2023)
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Contributions

1. We develop an efficient and flexible method for estimating STHP
model parameters allowing (1) any (separable) parametric
kernel, and (2) space-time non-separable kernels

−→
√

our method enhances precision and adaptibility when
dealing with complex dependencies in real data.

2. Our numerical experiments on simulated and real data show
flexibility, adaptability to phenomenon’s characteristics, and
accuracy compared to SOTA.

−→ GitHub: github.com/EmiliaSiv/
Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes
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Perspectives



Perspectives: Geostatistics

• Gradually relax some hypotheses:

• Assumption 2 (stationary hypothesis): locally stationary processes

• Assumption 4 (border hypothesis) less restrictive: c(h) ↘ 0

• Assumption 5 (regularity hypothesis): other smoothing techniques

−→
√

extend our main results to a more general framework

• Irregular grid: define different sets of neighbors, difficulties when
controlling the spectrum of the covariance matrix

−→
√

cover more real-world situations
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Perspectives: Hawkes Processes

• Non-constant baseline and irregular discretization grid

−→
√

improve accuracy, based on additional information on
phenomenon’s characteristics

• Marked spatio-temporal Hawkes processes:

λi(x, y, t,M|Ht) = µi +
D∑

j=1

∑
uj
n∈Hj

t

αij gij(x− xjn, y− yjn, t− tjn,M−Mj
n),

where Mj
n is the mark of the event

−→
√

additional important features (magnitude of an
earthquake, type of crime, etc)

• Non-separability in marked processes

−→
√

accounting for space-time and marks interactions

• Python library with MIND team (Inria)
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Publications and Presentations

Work in progress: Hydrogeology and Spatial Analysis, with Juan Guzmán

Publications:

■ E. Siviero, E. Chautru, & S. Clémençon (2023).
A Statistical Learning View of Simple Kriging. TEST, 33(1), 271-296.

■ E. Siviero, G. Staerman, S. Clémençon, & T. Moreau (2024).
Flexible Parametric Inference for Space-Time Hawkes Processes. ArXiv
preprint arXiv:2406.06849 (Submitted).

Presentations:

■ CAp 2022 (poster), COMPSTAT 2022 (oral)
■ MIND team Seminar 2023 (oral), COMPSTAT 2024 (oral)

GitHub:

■ github.com/EmiliaSiv/Simple-Kriging-Code

■ github.com/EmiliaSiv/

Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes 42/42

https://link.springer.com/article/10.1007/s11749-023-00891-w
https://arxiv.org/abs/2406.06849
https://github.com/EmiliaSiv/Simple-Kriging-Code
https://github.com/EmiliaSiv/Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes
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Thanks for your attention !
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